T-SUPPRESSOR CELL ABNORMALITIES IN TYPE I MEMBRANOPROLIFERATIVE GLOMERULONEPHRITIS

B Brando, G Busnach, S Bertoli, M L Nova, L Minetti

Niguarda Ca’ Granda Hospital, Milan, Italy

Summary

Twelve patients with type I membranoproliferative glomerulonephritis (MPGN) have been studied. All had normal renal function, none a nephrotic syndrome, and none was on therapy. In 7/12 serum C₃ and/or C₄ were low. T cell subsets were analysed with OKT monoclonal antibodies and Ts function (TsF) was studied by the Concanavalin-A Enhancement test (Con-A E) and with a new assay where native OKT8+ cell function only is explored (OKT8-DEP PWM test). OKT4/OKT8 ratio was lower than controls (p < 0.025). TsF, as studied by the Con-A E was unchanged, while OKT8-DEP PWM test showed a marked decrease (p<0.005). Hypocomplementaemic patients (H), as compared with normocomplementaemic patients (N), had lower OKT4/OKT8 ratio (p<0.01) while TsF was unchanged in both groups. These results are consistent with a functional defect of Ts activity in type I MPGN. Increased OKT8+ cells may be a compensatory response, and hypocomplementaemia may be a marker of this defect.

Introduction

Immunologic disturbances have long been recognised in type I MPGN, as demonstrated by complement activation, immunoglobulins and complement deposition in glomerular capillary walls and detectable circulating immune complexes in some cases [1–3]. No clearcut relationship has been found between serum complement profile, circulating immune complexes, patterns of immunofluorescence on renal biopsy and disease activity [2]. The advent of monoclonal antibodies directed against T-cell subsets [4] and the availability of various T-cell functional assays [5, 6], prompted us to study the immunoregulatory status of type I MPGN patients.
Patients and methods

Twelve patients with a histological diagnosis of type I MPGN have been investigated: six males and six females, mean age 37 ± 16.5 years, with normal renal function, without nephrotic syndrome and not having received any immunosuppressive treatment in the preceding year. Duration of illness was 4–132 months. Proteinuria (ranging 0–2g/24hrs) was present in 10/12, microscopic haematuria in 7/12. Complement activity (CH50) was low in 7/12. Complement fractions C3 and C4 as measured by nephelometer analysis were respectively reduced in 5/12 and in 4/12; two patients had low values of both. Circulating immune complexes were present in 2/12 with solid phase conglutinin assay. Serum immunoglobulins showed widely scattered values. No significant relationship was found between clinical and immunological data.

T-cell subsets were analysed by indirect immunofluorescence with OKT3, OKT4, OKT8 monoclonal antibodies (Orthomune, Ortho Diagnostic Systems, Raritan, NJ) as previously described [4].

OKT4/OKT8 ratio was calculated, as well as OKT4/OKT3 and OKT8/OKT3 ratios, after subtraction of OKT4+ OKT8+ double labelled cells. OKT4/OKT3 and OKT8/OKT3 ratios were calculated to ascertain the role of OKT4 and OKT8 subsets in determining OKT4/OKT8 ratio modifications. Non-specific T-suppressor cell function (TsF) was determined by a slight modification of the Con-A E test [5] and suppressor activity was expressed as percentage inhibition. OKT8+ cell specific suppressor activity was determined with a new test (OKT8-DEP PWM), which explores the B-cell response in a Pokeweed mitogen-driven system with and without native OKT8+ cells, as described in detail elsewhere [6]. OKT8+ cell activity is expressed as a percentage of suppression.

Sixteen sex and age matched controls were studied at the same time.

Results

In Table I, MPGN patients are compared with controls. MPGN patients showed a significantly lower OKT4/OKT8 ratio (p < 0.025) due to an increase of OKT8/OKT3 ratio (p < 0.05). TsF, as measured with Con-A E test was in the normal

<table>
<thead>
<tr>
<th></th>
<th>T4/T8 ratio</th>
<th>T4/T3 %</th>
<th>T8/T3 %</th>
<th>Suppression index %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Con-A E</td>
</tr>
<tr>
<td>Controls</td>
<td>1.8 ± 0.72</td>
<td>60.6 ± 11.21</td>
<td>31.1 ± 10.86</td>
<td>47.5 ± 15</td>
</tr>
<tr>
<td>Type I MPGN</td>
<td>1.2 ± 0.50</td>
<td>53.8 ± 17.41</td>
<td>44.2 ± 19.36</td>
<td>35.6 ± 22.5</td>
</tr>
<tr>
<td></td>
<td>p < 0.025</td>
<td>p: NS</td>
<td>p < 0.05</td>
<td>p: NS</td>
</tr>
</tbody>
</table>

TABLE 1. OKT4/OKT8 ratio, OKT4/OKT3, OKT8/OKT3 % and suppression index % with Con-A E and OKT8-DEP PWM assays in 12 type I MPGN patients, as compared with 16 matched controls
range, while OKT8-DEP PWM test showed a significant reduction of native OKT8+ cell suppressor function.

In Table II, hypocomplementaemic (H) and normocomplementaemic (N) patients are compared. H patients have lower OKT4/OKT8 ratios (p < 0.01) not only due to an increased OKT8/OKT3 ratio (p: NS), but also to a decrease of OKT4/OKT3 ratio (p < 0.005). Similar suppressor activities were noted in both groups.

<table>
<thead>
<tr>
<th></th>
<th>T4/T8 ratio</th>
<th>T4/T3 %</th>
<th>T8/T3 %</th>
<th>Suppression index %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Con-A E</td>
</tr>
<tr>
<td>MPGN – N (5)</td>
<td>1.6 ± 0.44</td>
<td>68.4 ± 15.89</td>
<td>38.6 ± 14.9</td>
<td>31.3 ± 20.3</td>
</tr>
<tr>
<td>MPGN – H (7)</td>
<td>1.0 ± 0.34</td>
<td>43.5 ± 9.22</td>
<td>48.2 ± 22.22</td>
<td>35.9 ± 25.7</td>
</tr>
<tr>
<td>p < 0.01</td>
<td>p < 0.005</td>
<td>p: NS</td>
<td>p: NS</td>
<td>p: NS</td>
</tr>
</tbody>
</table>

Discussion

Patients with type I MPGN, normal renal function and without a nephrotic syndrome seem to have T-cell immunoregulatory subset abnormalities. The major features are a reduction in the OKT4/OKT8 ratio, which is more pronounced in hypocomplementaemic patients, and a functional defect of Ts cells, as demonstrated by a native OKT8+ cell-dependent assay.

Our results do not completely agree with a previous report, in which, however, the cases reported were unselected and functional assays were not performed [7]. In our series the duration of illness seems to be unrelated to T cell abnormalities. The decrease of the OKT4/OKT8 ratio is due to a relative increase of OKT8+ subset, although hypocomplementaemic patients also show a reduction in OKT4+ cells. Hypocomplementaemia may thus be considered as a marker of a more pronounced immunologic disturbance, while low OKT4/OKT8 ratios and low OKT4+ cells can account for a poor overall immune responsivity [8].

It is noteworthy that increased circulating OKT8+ cells have been demonstrated to exert a poor suppressor activity in vitro.

There is increasing evidence of possible discrepancies between a given T cell phenotype and its functional activity in various diseases [7–9]. The conventional Con-A E test failed to detect significant abnormalities in our patients, maybe because it explores a bulk of heterogeneous suppressor activities. On the contrary, the OKT8-DEP PWM assay seems to be more specific for the assessment of Ts cell function, without mitogen manipulations and irrespective of patients’ immune status [6].

671
It can be suggested that the increased number of OKT8+ cells in type I MPGN patients may partially compensate for their functional defect.

References

3. Davis CA, Marder H, West CD. Kidney Int 1981; 20: 728

Address for correspondence: B Brando, Renal Unit, Niguarda Ca' Granda Hospital, Milan, Italy