CIRCULATION CROISÉE ENTRE UN LEUCÉMIQUE IRRADIÉ ET UN URÉMIQUE CHRONIQUE

Clinique Universitaire de Médecine Interne (Dir. Prof. A. F. Muller), Hôpital Cantonal, Genève, Suisse

Des tentatives d'établir une circulation croisée durable chez l'homme ont été publiées récemment. Elles associaient une patiente atteinte d'insuffisance hépatique gravissime et un porteur de liposarcome, un insuffisant rénal et un malade souffrant d'une aplasie médullaire d'origine médicamenteuse (Burnell et coll., 1963), un insuffisant rénal et une jeune-fille dont la leucémie aiguë était devenue résistante à la chimiothérapie et qui fut irradiée (Eschbach et coll., 1965).

En décembre 1965, nous cûmes à nous occuper de deux patients dont l'affection échappait aux moyens thérapeutiques classiques.

Groupes Sanguins

<table>
<thead>
<tr>
<th>K : A², DCCee, Kell⁻, Duffy⁻</th>
<th>Duffy⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>T : A¹, DCEE, Kell⁻, Duffy⁺</td>
<td></td>
</tr>
</tbody>
</table>

Technique

Les deux patients sont étendus côte à côte, le lit d'un d'entre eux est placé sur une balance dont la précision est de 50 g. Les shunts sont réunis par deux tuyaux de silastic. Celui qui relie l'artère de K. à la veine de T. est muni d'un clamp à vis, la tension artérielle du premier étant la plus élevée; ce procédé permet de contrôler le poids. Le débit par minute est apprécié par le temps de passage d'une bulle d'air prenant tout le diamètre du tuyau, entre les deux extrémités du silastic dont volume intérieur et longueur ont été mesurés. Le débit sanguin variera entre 200 et 30 ml/min., en fonction de la perméabilité des vaisseaux, avec une moyenne de 150 ml/min. Les neuf premières séances dureraient trois heures et seraient quoti-
diennes. Puis, devant la baisse régulière des leucocytes et thrombocytes de K., nous passerons à deux séances par 24 heures, de deux et une heure.

Résultats

Aspect général (Fig. 1): Pour autant que les poids ne variant pas, les deux associés ne présentent pas de variations notables du pouls et de la tension artérielle.

L'évolution de T. est celle d'un irradié total: nausées, vomissements, diarrhées, perte des cheveux, teint plombé. Dès les premières séances de circulation croisée, la température monte, ce qui ne l'empêche pas, au début, de manger et de dormir. A partir du septième jour, le tableau sera dominé par un état fbrile permanent non influencé par l'antibiothérapie, les stéroïdes, les antithérmiques, et qui est vraisemblablement commandé par la plaie du pied. Le gros orteil se nécrose. Torpeur, désorientation, hallucinations et délire conduiront progressivement au coma et à la mort le 17 janvier 1966, dans un tableau d'insuffisance cardiaque avec œdème et de toxi-infection. Autopsie: syndrome après irradiation typique et endocardite terminale.

CIRCULATION CROISÉE ENTRE UN LEUCÉMIQUE IRRADIÉ ET UN URÉMIQUE CHRONIQUE

Mr T.

Leucocytes/ml

9000
8000
7000
6000
5000
4000
3000
2000
1000
0

1 5 10 15 20 25

Fig. 2.

Transfert net de leucocytes milliards

600

500

300

200

100

0

1 5 10 15 20 25

Fig. 3.

Mr T.

CIRCULATION CROISÉE

Thrombocytes/ml x 10³

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

1 5 10 15 20 25

Fig. 3.

Transfert net de thrombocytes milliards

3000

2000

1000

0

6700

1 5 10 15 20 25

Phytohémagglutinine (Mr K.)

P

M

Phytohémagglutinine (Mr K.)

P

M

Phytohémagglutinine (Mr K.)
O. KORALNIK, ET COLL.

CIRCULATION CROISEE

![Graph showing thrombocytes and leucocytes over time](image)

Fig. 4.

Aspect hématologique (Figs. 2, 3, 4): Lorsque la leucocytose et les thrombocytes de K. fléchissent, nous administrons de la Bacto-phytohémagglutinine (dico) dès le dixième jour. Coincidence ou relation de cause à effet, le nombre des leucocytes s'élève à nouveau mais non celui des thrombocytes. Le transfert des leucocytes (Thomas et coll., 1965) est rarement inférieur à 100 milliards par seance. Il atteindra un maximum de 540 milliards le 24ème jour. Le transfert des thrombocytes, très important au début, se stabilisera par la suite aux environs de 500 milliards. L’opposition du transfert calculé à celui du nombre des leucocytes ou des thrombocytes dans le sang périphérique de T. montre l’intensité de la captation tissulaire des éléments figurés venant de K. Si le transfert des leucocytes n’est pas influencé par la remontée des leucocytes de K., c’est qu’à partir de ce moment le débit des shunts baisse. Les paramyéloblastes de T. disparaîtront au cinquième jour après l’irradiation totale. Leur transfert vers K. est de l’ordre de:

1er jour: 3,830 millions de paramyéloblastes
2ème jour: 360 millions de paramyéloblastes
3ème jour: 19 millions de paramyéloblastes
4ème jour: 286 millions de paramyéloblastes
5ème jour: 300 millions de paramyéloblastes

puis, disparition définitive des paramyéloblastes. Comme on pouvait s’y attendre, les paramyéloblastes n’apparaîtront jamais dans le sang périphérique de K.

La culture des lymphocytes de T. et de K., faite séparément, donne une réponse normale à la phyto-hémagglutinine. En culture mixte, la réponse est faible (35% de blastes), soit très peu au-dessus du contrôle. Les lymphocytes prélevés au 23ème jour de circulation croisée, soumis à la phyto-hémagglutinine, donnent une réponse très faible: T. 37%, K. 40% (normal: 30-40%).

250
CIRCULATION CROISÉE ENTRE UN LEUCÉMIQUE IRRADIÉ ET UN URÉMIQUE CHRONIQUE

60 à 80%). La culture mixte donne une réponse de 31%. En raison de l’absence d’une stimulation en culture mixte, on peut conclure qu’il n’y a pas eu de réaction ‘greffe contre hôte’, c’est-à-dire de réponse de T. aux cellules de K. Il faut cependant retenir, qu’en raison de l’urésie chronique de K, sa réactivité immunologique était certainement diminuée.

La répartition des leucocytes et des thrombocytes se fait très rapidement. Voici leur numération lors de la neuvième circulation croisée. Les contrôles à la soixantième et à la 120ème minute ne montrent aucune modification par rapport à la trentième ou 180ème minute.

9ème circulation croisée

<table>
<thead>
<tr>
<th>Globules blancs/ml</th>
<th>Début</th>
<th>30 min.</th>
<th>180 min.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T. 700</td>
<td>K. 5.700</td>
<td>T. 3.650</td>
</tr>
<tr>
<td>neutrophiles segmentés %</td>
<td>2</td>
<td>49</td>
<td>45</td>
</tr>
<tr>
<td>neutrophiles non segmentés</td>
<td>—</td>
<td>39</td>
<td>47</td>
</tr>
<tr>
<td>éosinophiles</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>basophiles</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>monocytes</td>
<td>10</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>lymphocytes</td>
<td>78</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>plasmocytes</td>
<td>4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>cellules lympho-plasmocytaires nucléolées</td>
<td>6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Thrombocytes</td>
<td>—</td>
<td>75.000</td>
<td>24.000</td>
</tr>
</tbody>
</table>

Circulation croisée

<table>
<thead>
<tr>
<th>Acide urique</th>
<th>Créatinine</th>
</tr>
</thead>
<tbody>
<tr>
<td>190 mg/l</td>
<td>34 mg/l</td>
</tr>
<tr>
<td>119 mg/l</td>
<td>86 mg/l</td>
</tr>
</tbody>
</table>

Fig. 5.
Avant les circulations croisées, l’hématocrite de K. était de 35% et sa réticulocyteose de 4%. Dès le huitième jour, l’hématocrite tombe à 18%, la réticulocyteose atteint 50%. Cet hématocrite se retrouve chez T. qui reçoit 2,8 litres de sang dès la seconde semaine afin d’éviter l’aggravation de l’anémie. Après arrêt des circulations croisées, l’anémie de K. ne se corrige pas malgré les transfusions (hémorragies digestives), mais sa réticulocyteose atteint 160% ses globules blancs montent à 14.000 et ses thrombocytes à 180.000/ml.

Elimination azotée (Fig. 5): Chaque séance provoque très rapidement une forte diurèse de T. Son élimination sur 24 heures est de 15 à 25 g d’azote uréique, 1,5 à 2,5 g de créatinine, 1,5 à 2 g d’acide urique. Cette élimination ne fléchit pas jusqu’à la fin. Diurèse de 24 h : 2 à 6 litres.

Conclusion

BIBLIOGRAPHIE

DISCUSSION

Le Président: Je vous remercie. Est-ce que quelqu'un a des commentaires à faire sur la communication de M. Koralnik?

Revillard (Lyon): Je voudrais demander à M. Koralnik s'il a mesuré la quantité de lymphocytes qui passent d'un sujet à l'autre au cours d'une séance de circulation croisée, non pas le débit leucocytaire de shunt mais la quantité réellement échangée et si les cellules de l'un des deux ont été marquées?

Koralnik (Genève): Nous avons fait ce calcul pour tous les leucocytes mais nous ne l'avons pas fait régulièrement pour les lymphocytes. Ce calcul a été fait pour le second jour: nous avons transféré 44 millions de lymphocytes.

Nous n'avons pas marqué ces lymphocytes.

Revillard (Lyon): Est-ce que vous avez une idée, dans de telles expériences, sur la quantité de lymphocytes qui demeurent dans le receveur.

Koralnik (Genève): Je n'ai pas de chiffre total à vous offrir. La proportion en lymphocytes avant la séance chez le receveur était de 70 à 80%; il n'y avait plus de neutrophiles ou pour ainsi dire pas, et tout ce que l'on retrouvait comme éléments figurés dans le sang à la périphérie, chez le receveur, étaient soit des thrombocytes, soit des lymphocytes (80%) alors que le donneur avait une répartition ressemblant à celle d'un sujet subissant une agression, avec neutrophilie à 90%. Et vous avez vu qu'après trente minutes déjà, cela se stabilise.

The Chairman: Dr. Scribner, do you have any comment on this communication?

Scribner (Seattle): First, I would like to congratulate the essayists on carrying out a technique described to them only in the publication by Dr. Brunel and Dr. Thomas from our group. They executed the technique as well or better than has been done in our laboratory. It is a very nice piece of work.

The results that they found are essentially the same as the findings in the patient that the essayist referred to.

The best way I can summarize the status of cross-circulation in our hands is to point out the various areas in which it is now being used.

Our major experience was similar to the one described, with the uraemic really unable to support the leukaemic's bone-medulla over a long period. Our experience lasted four months. Eventually the leukaemic succumbed to sepsis. The uraemic, however, went on chronic dialysis and is alive and well two years later. He is doing fine as of today. So that there appear to be no long-term ill effects on the uraemic of the cross-circulation.

At that point, we had hoped that human cross-circulation might offer a possibility of what we would call free-home dialysis where two people, one a normal spouse could act as an artificial kidney and the patient would be dialysed daily by having a cross-circulation in the home.

Unfortunately, this has not evolved because, in subsequent experiences in cross-circulation with other pairs, particularly a young man with a bone-medulla failure following drug use (chloramphenicol) who was carried by first his father and then his grandfather and then an
aunt, the normal donors were able to carry the boy with the medulla failure each for about a week and then febrile episodes began to occur in the normal donor.

Hence, from these experiences, we have found that a normal person acting as a donor in a cross-circulation pair seems to begin to react anywhere from five to ten days after the start of the cross-circulation’s daily exposures. We have had similar experience in using normals to treat hepatic coma. But since you can go five to eight days with a normal donor, it does offer a method, however hazardous, for the management of what we hope is reversible hepatic coma.

So, as of the present time, human cross-circulation in our hands is being reserved for the needs of the young hopefully reversible patient with hepatic coma and we have had no luck with saving anybody with an acute medullary failure or with leukaemia.

We have two out of five survivals from what is obviously lethal hepatic coma, and in this area we hope to have further experience.

The question of the risk to the donor is unresolved and we will approach this problem with great care and temerity, having the donor fully understand the unknown risk involved.

I am happy to say that in the total of six cross-circulations and perhaps a hundred exposures, we have yet to have a serious complication in the donor.

KORALNIK (Geneva): We had the same hopes you had. We were supposing that after one week in hospital, both would go home and play cards during the three hours they would be sitting together.

It did not work out. But the thing was that primarily they were very tired by these temperature fits and we found no means to inhibit these temperature spells. We tried everything we had. Could you manage these febrile reactions?

SCRIBNER (Seattle): The febrile reactions, in all but the leukaemic/uraemic pair, did not occur until several days of cross-circulation, and at that point there was nothing to do and the donor was made so uncomfortable by this, and we were so fearful of a major problem, that we stopped.

The two that went four and a half months stopped having febrile episodes after about a week and then, for the better part of the four months, the daily cross-circulation was uneventful. It was only when the leukaemic began to get infected again towards the end that the febrile episodes recurred.

So that I would say perhaps that, in your pair, the presence of the infection in the leukaemic may have contributed to these febrile episodes.

The Chairman: Thank you, Dr. Scribner. Je pense que, pour conclure, je suis heureux qu’on ait insisté sur le problème du donneur car, devant les incertitudes des avantages de cette technique, je crois que les risques encourus par le donneur doivent représenter actuellement un des soucis principaux des promoteurs de ce traitement.

Je passe la parole à M. Briggs qui va parler du point suivant: ‘Renal function following acute tubular necrosis’.